Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 13(1): 8813, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-20240029

ABSTRACT

Mother-to-child transmission of SARS-CoV-2 has been reported since the onset of the COVID-19 pandemic. We conducted a study to summarize evidence on the risk of mother-to-child transmission in the first 30 days after birth in high-income countries and to evaluate the association between preventive measures and the risk of infection for the neonate. A systematic review and meta-analysis were undertaken following PRISMA guidelines. The National Library of Medicine, Web of Science, and Excerpta Medica databases were screened on February 26, 2022. All prospective observational studies addressing the frequency of infection in infants born to mothers SARS-CoV-2 positive were included. Twenty-six studies were included, reporting data of 2653 mothers with SARS-CoV-2 and 2677 neonates. The proportion meta-analysis pointed out an overall estimate of SARS-CoV-2 infection among infants of 2.3% (95% CI: 1.4-3.2%). Data from studies with (1.4%, 95% CI: 0.8-2) and without (1.3%, 95% CI: 0.0-2.7%) rooming-in provided similar risk of infection. Adopting at least two prevention measures during rooming-in resulted in a rate of mother-to-child infection of 1.0% (95%CI: 0.3-1.7%). The results of this study show a low rate of perinatal infection, support the rooming-in and confirm the effectiveness of preventive measures in reducing the risk of mother-to-child viral transmission.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant , Infant, Newborn , Humans , Female , COVID-19/epidemiology , SARS-CoV-2 , Infectious Disease Transmission, Vertical/prevention & control , Pandemics , Developed Countries , Pregnancy Complications, Infectious/epidemiology , Observational Studies as Topic
2.
J Clin Med ; 12(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2228143

ABSTRACT

The aim of our study was to evaluate whether the introduction of SDD in a structured protocol for VAP prevention was effective in reducing the occurrence of ventilator-associated pneumonia (VAP) in COVID-19 patients without changes in the microbiological pattern of antibiotic resistance. This observational pre-post study included adult patients requiring invasive mechanical ventilation (IMV) for severe respiratory failure related to SARS-CoV-2 admitted in three COVID-19 intensive care units (ICUs) in an Italian hospital from 22 February 2020 to 8 March 2022. Selective digestive decontamination (SDD) was introduced from the end of April 2021 in the structured protocol for VAP prevention. The SDD consisted of a tobramycin sulfate, colistin sulfate, and amphotericin B suspension applied in the patient's oropharynx and the stomach via a nasogastric tube. Three-hundred-and-forty-eight patients were included in the study. In the 86 patients (32.9%) who received SDD, the occurrence of VAP decreased by 7.7% (p = 0.192) compared to the patients who did not receive SDD. The onset time of VAP, the occurrence of multidrug-resistant microorganisms AP, the length of invasive mechanical ventilation, and hospital mortality were similar in the patients who received and who did not receive SDD. The multivariate analysis adjusted for confounders showed that the use of SDD reduces the occurrence of VAP (HR 0.536, CI 0.338-0.851; p = 0.017). Our pre-post observational study indicates that the use of SDD in a structured protocol for VAP prevention seems to reduce the occurrence of VAP without changes in the incidence of multidrug-resistant bacteria in COVID-19 patients.

3.
BMJ Open ; 11(2): e036616, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1228874

ABSTRACT

INTRODUCTION: In patients with septic shock, low levels of circulating immunoglobulins are common and their kinetics appear to be related to clinical outcome. The pivotal role of immunoglobulins in the host immune response to infection suggests that additional therapy with polyclonal intravenous immunoglobulins may be a promising option in patients with septic shock. Immunoglobulin preparations enriched with the IgM component have largely been used in sepsis, mostly at standard dosages (250 mg/kg per day), regardless of clinical severity and without any dose adjustment based on immunoglobulin serum titres or other biomarkers. We hypothesised that a personalised dose of IgM enriched preparation based on patient IgM titres and aimed to achieve a specific threshold of IgM titre is more effective in decreasing mortality than a standard dose. METHODS AND ANALYSIS: The study is designed as a multicentre, interventional, randomised, single-blinded, prospective, investigator sponsored, two-armed study. Patients with septic shock and IgM titres <60 mg/dL will be randomly assigned to an IgM titre-based treatment or a standard treatment group in a ratio of 1:1. The study will involve 12 Italian intensive care units and 356 patients will be enrolled. Patients assigned to the IgM titre-based treatment will receive a personalised daily dose based on an IgM serum titre aimed at achieving serum titres above 100 mg/dL up to discontinuation of vasoactive drugs or day 7 after enrolment. Patients assigned to the IgM standard treatment group will receive IgM enriched preparation daily for three consecutive days at the standard dose of 250 mg/kg. The primary endpoint will be all-cause mortality at 28 days. ETHICS AND DISSEMINATION: The study protocol was approved by the ethics committees of the coordinating centre (Comitato Etico dell'Area Vasta Emilia Nord) and collaborating centres. The results of the trial will be published within 12 months from the end of the study and the steering committee has the right to present them at public symposia and conferences. TRIAL REGISTRATION DETAILS: The trial protocol and information documents have received a favourable opinion from the Area Vasta Emilia Nord Ethical Committee on 12 September 2019. The trial protocol has been registered on EudraCT (2018-001613-33) on 18 April 2018 and on ClinicalTrials.gov (NCT04182737) on 2 December 2019.


Subject(s)
COVID-19 , Shock, Septic , Humans , Immunization, Passive , Immunoglobulin M , Prospective Studies , SARS-CoV-2 , Shock, Septic/drug therapy , Treatment Outcome
4.
Trials ; 21(1): 724, 2020 Aug 17.
Article in English | MEDLINE | ID: covidwho-717548

ABSTRACT

OBJECTIVES: To assess the hypothesis that an adjunctive therapy with methylprednisolone and unfractionated heparin (UFH) or with methylprednisolone and low molecular weight heparin (LMWH) are more effective in reducing any-cause mortality in critically-ill ventilated patients with pneumonia from SARS-CoV-2 infection compared to LMWH alone. TRIAL DESIGN: The study is designed as a multi-centre, interventional, parallel group, superiority, randomized, investigator sponsored, three arms study. Patients, who satisfy all inclusion criteria and no exclusion criteria, will be randomly assigned to one of the three treatment groups in a ratio 1:1:1. PARTICIPANTS: Inpatients will be recruited from 8 Italian Academic and non-Academic Intensive Care Units INCLUSION CRITERIA (ALL REQUIRED): 1. Positive SARS-CoV-2 diagnostic (on pharyngeal swab of deep airways material) 2. Positive pressure ventilation (either non-invasive or invasive) from > 24 hours 3. Invasive mechanical ventilation from < 96 hours 4. PaO2/FiO2 ratio lower than 150 mmHg 5. D-dimer level > 6 times the upper limit of normal reference range 6. C-reactive Protein > 6-fold upper the limit of normal reference range EXCLUSION CRITERIA: 1. Age < 18 years 2. On-going treatment with anticoagulant drugs 3. Platelet count < 100.000/mm3 4. History of heparin-induced thrombocytopenia 5. Allergy to sodium enoxaparin or other LMWH, UFH or methylprednisolone 6. Active bleeding or on-going clinical condition deemed at high risk of bleeding contraindicating anticoagulant treatment 7. Recent (in the last 1 month prior to randomization) brain, spinal or ophthalmic surgery 8. Chronic assumption or oral corticosteroids 9. Pregnancy or breastfeeding or positive pregnancy test. In childbearing age women, before inclusion, a pregnancy test will be performed if not available 10. Clinical decision to withhold life-sustaining treatment or "too sick to benefit" 11. Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition) 12. Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: • LMWH group: patients in this group will be administered enoxaparin at standard prophylactic dosage. • LMWH + steroid group: patients in this group will receive enoxaparin at standard prophylactic dosage and methylprednisolone. • UFH + steroid group: patients in this group will receive UFH at therapeutic dosages and methylprednisolone. UFH will be administered intravenously in UFH + steroid group at therapeutic doses. The infusion will be started at an infusion rate of 18 UI/kg/hour and then modified to obtain aPTT Ratio in between the range of 1.5-2.0. aPTT will be periodically checked at intervals no longer than 12 hours. The treatment with UFH will be administered up to ICU discharge. After ICU discharge anticoagulant therapy may be interrupted or switched to prophylaxis with LMWH in the destination ward up to clinical judgement of the attending physician. Enoxaparin will be administered in both LMWH group and LMWH + steroid group at standard prophylactic dose (i.e., 4000 UI once day, increased to 6000 UI once day for patients weighting more than 90 kg). The treatment will be administered subcutaneously once a day up to ICU discharge. After ICU discharge it may be continued or interrupted in the destination ward up to clinical judgement of the attending physician. Methylprednisolone will be administered in both LMWH + steroid group and UHF + steroid group intravenously with an initial bolus of 0,5 mg/kg followed by administration of 0,5 mg/kg 4 times daily for 7 days, 0,5 mg/kg 3 times daily from day 8 to day 10, 0,5 mg/kg 2 times daily at days 11 and 12 and 0,5 mg/kg once daily at days 13 and 14. MAIN OUTCOMES: Primary Efficacy Endpoint: All-cause mortality at day 28 Secondary Efficacy Endpoints: - Ventilation free days (VFDs) at day 28, defined as the total number of days that patient is alive and free of ventilation (either invasive or non-invasive) between randomization and day 28 (censored at hospital discharge). - Need of rescue administration of high-dose steroids or immune-modulatory drugs; - Occurrence of switch from non-invasive to invasive mechanical ventilation during ICU stay; - Delay from start of non-invasive ventilation to switch to invasive ventilation; - All-cause mortality at ICU discharge and hospital discharge; - ICU free days (IFDs) at day 28, defined as the total number of days between ICU discharge and day 28. - Occurrence of new infections from randomization to day 28; including infections by Candida, Aspergillus, Adenovirus, Herpes Virus e Cytomegalovirus - Occurrence of new organ dysfunction and grade of dysfunction during ICU stay. - Objectively confirmed venous thromboembolism, stroke or myocardial infarction; Safety endpoints: - Occurrence of major bleeding, defined as transfusion of 2 or more units of packed red blood cells in a day, bleeding that occurs in at least one of the following critical sites [intracranial, intra-spinal, intraocular (within the corpus of the eye; thus, a conjunctival bleed is not an intraocular bleed), pericardial, intra-articular, intramuscular with compartment syndrome, or retroperitoneal], bleeding that necessitates surgical intervention and bleeding that is fatal (defined as a bleeding event that was the primary cause of death or contributed directly to death); - Occurrence of clinically relevant non-major bleeding, defined ad acute clinically overt bleeding that does not meet the criteria for major and consists of any bleeding compromising hemodynamic; spontaneous hematoma larger than 25 cm2, intramuscular hematoma documented by ultrasonography, haematuria that was macroscopic and was spontaneous or lasted for more than 24 hours after invasive procedures; haemoptysis, hematemesis or spontaneous rectal bleeding requiring endoscopy or other medical intervention or any other bleeding requiring temporary cessation of a study drug. RANDOMIZATION: A block randomisation will be used with variable block sizes (block size 4-6-8), stratified by 3 factors: Centre, BMI (<30/≥30) and Age (<75/≥75). Central randomisation will be performed using a secure, web-based, randomisation system with an allocation ratio of 1:1:1. The allocation sequence will be generated by the study statistician using computer generated random numbers. BLINDING (MASKING): Participants to the study will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The target sample size is based on the hypothesis that the combined use of UHF and steroid versus the LMWH group will significantly reduce the risk of death at day 28. The overall sample size in this study is expected to be 210 with a randomization 1:1:1 and seventy patients in each group. Assuming an alpha of 2.5% (two tailed) and mortality rate in LMWH group of 50%, as indicated from initial studies of ICU patients, the study will have an 80% power to detect at least a 25 % absolute reduction in the risk of death between: a) LMHW + steroid group and LMWH group or b) UHF + steroid group and LMWH group. The study has not been sized to assess the difference between LMHW + steroid group and UHF + steroid group, therefore the results obtained from this comparison will need to be interpreted with caution and will need further adequately sized studies confirm the effect. On the basis of a conservative estimation, that 8 participating sites admit an average of 3 eligible patients per month per centre (24 patients/month). Assuming that 80 % of eligible patients are enrolled, recruitment of 210 participants will be completed in approximately 10 months. TRIAL STATUS: Protocol version 1.1 of April 26th, 2020. Recruitment start (expected): September 1st, 2020 Recruitment finish (expected): June 30th, 2021 TRIAL REGISTRATION: EudraCT number 2020-001921-30 , registered on April 15th, 2020 AIFA approval on May 4th, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Critical Illness , Heparin/administration & dosage , Methylprednisolone/administration & dosage , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Respiration, Artificial , Adult , COVID-19 , Heparin/adverse effects , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Methylprednisolone/adverse effects , Pandemics , Partial Thromboplastin Time , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL